论文标题

难题:通过解决难题中的图像中的新颖性检测

Puzzle-AE: Novelty Detection in Images through Solving Puzzles

论文作者

Salehi, Mohammadreza, Eftekhar, Ainaz, Sadjadi, Niousha, Rohban, Mohammad Hossein, Rabiee, Hamid R.

论文摘要

作为许多异常检测方法的重要组成部分,自动编码器缺乏复杂数据集中正常数据的灵活性。事实证明,U-NET对此目的有效,但是如果仅使用与其他基于AE的框架类似的重建错误进行培训,则在培训数据上过度贴合。作为自我监督学习(SSL)方法的借口,拼图解决方法早些时候证明了它在学习语义上有意义的特征方面的能力。我们表明,基于此任务的训练U-NET是一种有效的补救措施,可防止过度拟合并促进超越像素级功能的学习。但是,快捷方式解决方案在包括拼图游戏在内的SSL任务中是一个巨大的挑战。我们提出对抗性强大的训练作为有效的自动快捷方式删除。与在各种玩具和现实世界数据集上使用的最新技术(SOTA)异常检测方法相比,我们取得了竞争性或优越的结果。与许多竞争对手不同,所提出的框架是稳定,快速,数据效率的,并且不需要无原则的早期停止。

Autoencoder, as an essential part of many anomaly detection methods, is lacking flexibility on normal data in complex datasets. U-Net is proved to be effective for this purpose but overfits on the training data if trained by just using reconstruction error similar to other AE-based frameworks. Puzzle-solving, as a pretext task of self-supervised learning (SSL) methods, has earlier proved its ability in learning semantically meaningful features. We show that training U-Nets based on this task is an effective remedy that prevents overfitting and facilitates learning beyond pixel-level features. Shortcut solutions, however, are a big challenge in SSL tasks, including jigsaw puzzles. We propose adversarial robust training as an effective automatic shortcut removal. We achieve competitive or superior results compared to the State of the Art (SOTA) anomaly detection methods on various toy and real-world datasets. Unlike many competitors, the proposed framework is stable, fast, data-efficient, and does not require unprincipled early stopping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源