论文标题
无定形系统的低温热容量:纳米级的物理
Low temperature heat capacity of amorphous systems: physics at nano-scales
论文作者
论文摘要
与先前对玻色峰的研究相反,我们分析了纳米尺度无定形固体($ \ sim 3 nm $)中的状态密度和分散力的特定热贡献。我们的分析表明,大部分频谱中平均状态密度的通用半圆形式以及其边缘的超高指数增长。后者又导致了特定的热量,在$ t <1^o \; \ \ \ \ \ \ \ \ \ \ \ \ \; \; \; {\ bf k} $即使在纳米尺度上,尽管后者是在宏观尺度上进行的,但令人惊讶地与实验一致。分散力在微观尺度上的无处不在表明我们的结果也应用于其他无序材料。
Contrary to previous studies of boson peak, we analyze the density of states and specific heat contribution of dispersion forces in an amorphous solid of nano-scales ($\sim 3 nm$). Our analysis indicates a universal semi-circle form of the average density of states in the bulk of the spectrum along with a super-exponentially increasing behavior in its edge. The latter in turn leads to a specific heat, behaving linearly below $T < 1^o \; {\bf K}$ even at nano-scales, and, surprisingly agreeing with the experiments although the latter are carried out at macroscopic scales. The omnipresence of dispersion forces at microscopic scales indicates the application of our results to other disordered materials too.