论文标题

Akhcrnet:使用深度学习的孟加拉语手写角色识别

AKHCRNet: Bengali Handwritten Character Recognition Using Deep Learning

论文作者

Roy, Akash

论文摘要

我提出了一种最先进的神经体系结构解决方案,用于孟加拉字母的手写角色识别,复合字符以及数字数字,仅在11个时代就达到了最先进的精度为96.8%。 Chatterjee,Swagato等人之前也做过类似的工作。但是他们在大约47个时期的精度达到了96.12%。考虑到包含Resnet 50模型的重量,该模型是50层残留网络,该论文中使用的深神经结构非常大。与以前的任何工作相比,该拟议的模型可实现更高的准确性。 RESNET50是一个在Imagenet数据集上训练的良好模型,但是我提出了一个HCR网络,该网络是在没有“合奏学习”的孟加拉语角色训练的,该网络可以超越先前的体系结构。

I propose a state of the art deep neural architectural solution for handwritten character recognition for Bengali alphabets, compound characters as well as numerical digits that achieves state-of-the-art accuracy 96.8% in just 11 epochs. Similar work has been done before by Chatterjee, Swagato, et al. but they achieved 96.12% accuracy in about 47 epochs. The deep neural architecture used in that paper was fairly large considering the inclusion of the weights of the ResNet 50 model which is a 50 layer Residual Network. This proposed model achieves higher accuracy as compared to any previous work & in a little number of epochs. ResNet50 is a good model trained on the ImageNet dataset, but I propose an HCR network that is trained from the scratch on Bengali characters without the "Ensemble Learning" that can outperform previous architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源