论文标题

通过任意互连的多层网络中的代数连接最大化

Maximizing the algebraic connectivity in multilayer networks with arbitrary interconnections

论文作者

Tavasoli, Ali, Ardjmand, Ehsan, Shakeri, Heman

论文摘要

拉普拉斯基质的第二小最小特征值在表征许多网络特性方面是确定性的,被称为代数连通性。在本文中,我们通过分配受预算的相互链接权重,同时允许任意互连来调查多层网络中代数连接性的问题。对于低于阈值的预算,我们确定了最大代数连接的上限,该预算独立于互连模式,并且可以满足一定的规律性条件。对于无分析解决方案区域中有效的数值方法,我们将问题投入到凸框架中,该框架从几个角度探讨了问题,尤其是转变为易于解释且与最佳扩散阶段相关的图形嵌入问题。允许任意的互连需要多个过渡的区域,从而相对于一对一的互连情况提供了更多不同的扩散阶段。当互连模式没有限制时,我们得出了几个分析结果,表征了单个Fiedler向量的最佳权重。我们使用代数连接性和层大小的比率来解释结果。最后,我们使用每一层的fiedler矢量成分研究了通过贪婪的启发式方法来研究有限数量的互联链接的位置。

The second smallest eigenvalue of the Laplacian matrix is determinative in characterizing many network properties and is known as algebraic connectivity. In this paper, we investigate the problem of maximizing algebraic connectivity in multilayer networks by allocating interlink weights subject to a budget while allowing arbitrary interconnections. For budgets below a threshold, we identify an upper-bound for maximum algebraic connectivity which is independent of interconnections pattern and is reachable with satisfying a certain regularity condition. For efficient numerical approaches in regions of no analytical solution, we cast the problem into a convex framework that explores the problem from several perspectives and, particularly, transforms into a graph embedding problem that is easier to interpret and related to the optimum diffusion phase. Allowing arbitrary interconnections entails regions of multiple transitions, giving more diverse diffusion phases with respect to one-to-one interconnection case. When there is no limitation on the interconnections pattern, we derive several analytical results characterizing the optimal weights by individual Fiedler vectors. We use the ratio of algebraic connectivity and the layer sizes to explain the results. Finally, we study the placement of a limited number of interlinks by greedy heuristics, using the Fiedler vector components of each layer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源