论文标题
使用深层神经网络解决稳态Navier-Stokes方程中的反问题
Solving Inverse Problems in Steady-State Navier-Stokes Equations using Deep Neural Networks
论文作者
论文摘要
流体动力学中的反问题在科学和工程中无处不在,从电子冷却系统设计到海洋建模的应用。我们提出了一种通过结合深神经网络和数值偏微分方程(PDE)方案(PDE)方程(PDE)方程来解决稳态Navier-Stokes方程中解决反问题的一般方法。我们的方法将数值模拟表示为具有可区分运算符的计算图。然后,我们使用从计算图计算出具有反向模式自动分化的计算图计算出的梯度来解决逆问题。该技术使我们能够使用深神经网络对未知的物理特性进行建模,并将其嵌入PDE模型中。我们通过使用深层神经网络(DNN)计算空间变化的粘度和电导率场来证明我们的方法的有效性,并使用速度场的部分观察结果训练DNN。我们表明,DNN能够用稀疏和嘈杂的数据对复杂的空间变化物理场进行建模。我们的实施利用了开放访问ADCME,这是一个库,用于解决使用自动差异化的科学计算中的反向建模问题。
Inverse problems in fluid dynamics are ubiquitous in science and engineering, with applications ranging from electronic cooling system design to ocean modeling. We propose a general and robust approach for solving inverse problems in the steady-state Navier-Stokes equations by combining deep neural networks and numerical partial differential equation (PDE) schemes. Our approach expresses numerical simulation as a computational graph with differentiable operators. We then solve inverse problems by constrained optimization, using gradients calculated from the computational graph with reverse-mode automatic differentiation. This technique enables us to model unknown physical properties using deep neural networks and embed them into the PDE model. We demonstrate the effectiveness of our method by computing spatially-varying viscosity and conductivity fields with deep neural networks (DNNs) and training the DNNs using partial observations of velocity fields. We show that the DNNs are capable of modeling complex spatially-varying physical fields with sparse and noisy data. Our implementation leverages the open access ADCME, a library for solving inverse modeling problems in scientific computing using automatic differentiation.