论文标题
在高频驱动器下,通过频道浮标 - 温布拉德动力学中的相互作用破坏了马克维亚语。
Breakdown of Markovianity by interactions in stroboscopic Floquet-Lindblad dynamics under high-frequency drive
论文作者
论文摘要
Floquet-Magnus(FM)扩展理论是在高频驱动器下定期驱动(FLOQUET)系统的强大工具。在封闭的系统中,它表明他们在时间周期性的哈密顿量下的频镜动力学被FM扩展很好地捕获了,这给出了静态有效的哈密顿量。另一方面,在由时间周期性的liouvillian驱动的耗散系统中,如果FM扩展使静态的Liouvillian描述了连续时间的Markovian动力学,那么这仍然是一个重要且非平凡的问题,我们将其称为FM扩展的Liouvillianity。我们为具有本地交互的通用系统回答了这个问题。我们发现,尽管非相互作用的系统可以打破或保留FM扩展的利维利亚性,但通用的几个体体和多体相互作用系统将其在任何有限驱动器下破坏,这实际上是由FM扩展的高阶交互作用引起的。 liouvillianity破裂意味着高频制度中的马尔可夫耗散浮雕系统没有静态(马尔可夫)对应物,从而赋予了新兴的非马克维亚语的签名。我们的理论为在耗散浮雕系统中寻求独特现象提供了有用的见解。
Floquet-Magnus (FM) expansion theory is a powerful tool in periodically driven (Floquet) systems under high-frequency drives. In closed systems, it dictates that their stroboscopic dynamics under a time-periodic Hamiltonian is well captured by the FM expansion, which gives a static effective Hamiltonian. On the other hand, in dissipative systems driven by a time-periodic Liouvillian, it remains an important and nontrivial problem whether the FM expansion gives a static Liouvillian describing continuous-time Markovian dynamics, which we refer to as the Liouvillianity of the FM expansion. We answer this question for generic systems with local interactions. We find that, while noninteracting systems can either break or preserve Liouvillianity of the FM expansion, generic few-body and many-body interacting systems break it under any finite drive, which is essentially caused by propagation of interactions via higher order terms of the FM expansion. Liouvillianity breaking implies that Markovian dissipative Floquet systems in the high-frequency regimes do not have static (Markovian) counterparts, giving a signature of emergent non-Markovianity. Our theory provides a useful insight for questing unique phenomena in dissipative Floquet systems.