论文标题
明确的Orlov-Scherbin $ N $ Point功能的闭合代数公式
Explicit closed algebraic formulas for Orlov-Scherbin $n$-point functions
论文作者
论文摘要
我们从图形上得出了一个新的显式公式,该公式来自$ n $ - 点相关功能的一般性加权双Hurwitz编号,来自Kadomtsev-Petviashvili Tau超代类型的函数(也称为Orlov-Scherbin分区功能)。值得注意的是,我们使用相关光谱曲线建议的变量的变化,而我们的公式证明是在光谱曲线上定义的一组形式函数集中的多项式表达。
We derive a new explicit formula in terms of sums over graphs for the $n$-point correlation functions of general formal weighted double Hurwitz numbers coming from the Kadomtsev-Petviashvili tau functions of hypergeometric type (also known as Orlov-Scherbin partition functions). Notably, we use the change of variables suggested by the associated spectral curve, and our formula turns out to be a polynomial expression in a certain small set of formal functions defined on the spectral curve.