论文标题
在顶点代数上不变的Hermitian形式
Invariant Hermitian forms on vertex algebras
论文作者
论文摘要
我们在保形顶点代数及其(扭曲的)模块上研究不变的Hermitian形式。我们在任意$ w $ -algebra上建立了非零不变的hermitian形式。我们表明,对于最小的简单$ W $ -Algebra $ w_k(\ Mathfrak g,θ/2)$,只有当它的$ \ tfrac {1} {1} {2} \ Mathbb z $ - gradity与Parity兼容,除非$ W_K(\ Mathfrak g,tumpra confine and anbra colla)and confine colla colla colla。
We study invariant Hermitian forms on a conformal vertex algebra and on their (twisted) modules. We establish existence of a non-zero invariant Hermitian form on an arbitrary $W$-algebra. We show that for a minimal simple $W$-algebra $W_k(\mathfrak g,θ/2)$ this form can be unitary only when its $\tfrac{1}{2}\mathbb Z$-grading is compatible with parity, unless $W_k(\mathfrak g,θ/2)$ "collapses" to its affine subalgebra.