论文标题

广义不确定性关系的新方法

A New Approach to Generalised Uncertainty Relations

论文作者

Lake, Matthew J.

论文摘要

我们概述了一个新的模型,其中在没有修改的换向关系的情况下获得了广义的不确定性关系。尽管现有模型为规范的自由度引入了修改后的空间量,但我们为背景几何介绍了新的自由度。因此,相空间被扩大,但仍然是欧几里得。空间背景被视为具有相关状态向量的真实量子对象,并且该模型自然产生了扩展的广义不确定性原理(EGUP)。重要的是,这种方法解决了(或更确切地说是逃避)与修改后的换向因子相关的众所周知的问题,包括违反等价原理,多粒子状态的“足球”问题以及最小长度的速度依赖性。但是,这意味着两个根本性的结论。首先是必须以不同的规模进行量化空间,第二个是几何的基本量子是费米子。我们解释了在模型的背景下,这些如何与建立的结果相矛盾,包括用于多个定量常数的NO GO定理,这些定理仍然适用于物质颗粒的物种,以及重力的旋转$ 2 $的性质。

We outline a new model in which generalised uncertainty relations are obtained without modified commutation relations. While existing models introduce modified phase space volumes for the canonical degrees of freedom, we introduce new degrees of freedom for the background geometry. The phase space is therefore enlarged but remains Euclidean. The spatial background is treated as a genuinely quantum object, with an associated state vector, and the model naturally gives rise to the extended generalised uncertainty principle (EGUP). Importantly, this approach solves (or rather, evades) well known problems associated with modified commutators, including violation of the equivalence principle, the `soccer ball' problem for multiparticle states, and the velocity dependence of the minimum length. However, it implies two radical conclusions. The first is that space must be quantised on a different scale to matter and the second is that the fundamental quanta of geometry are fermions. We explain how, in the context of the model, these do not contradict established results including the no go theorems for multiple quantisation constants, which still hold for species of material particles, and the spin-$2$ nature of gravitons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源