论文标题

扩展的“依次钻孔”关节一致性转换及其在高斯独立矢量分析中的应用

The Extended "Sequentially Drilled" Joint Congruence Transformation and its Application in Gaussian Independent Vector Analysis

论文作者

Weiss, Amir, Yeredor, Arie, Cheema, Sher Ali, Haardt, Martin

论文摘要

近年来,独立矢量分析(IVA)已作为独立组件分析(ICA)的扩展为多组混合物的扩展而出现,其中每个集合中的源信号是独立的,但可能取决于其他集合中的源信号。在半盲IVA(或ICA)框架中,有关源概率分布的信息可能可用,从而导致最大似然(ML)分离。在最近的工作中,我们表明,在多变量高斯模型下,源信号的任意时间协方差矩阵(固定或非平稳)需要ml分离解决“依次钻孔”关节一致性(SEDJOCO)的“序列”一致性(SEDJOCO),这是一组矩阵的转化,但与(但与隔离)的分类差异化。在本文中,我们将结果扩展到IVA问题,显示高斯模型的ML解决方案(具有任意协方差和跨协方差矩阵)如何采用扩展的Sedjoco问题的形式。我们制定了扩展问题,得出了解决方案的条件,并提出了两种迭代溶液算法。此外,我们在产生的干扰与源比(ISR)矩阵上得出了诱导的Cramér-Rao下限(ICRLB),并通过模拟证明了如何通过求解扩展的Sedjoco问题获得的ML分离,而实际上是在求解ICRLB(非官方)与其他分离相反的事物相反,而这些分离的次数与其他分隔相反,而这些分离的知识是在其他方面进行的。

Independent Vector Analysis (IVA) has emerged in recent years as an extension of Independent Component Analysis (ICA) into multiple sets of mixtures, where the source signals in each set are independent, but may depend on source signals in the other sets. In a semi-blind IVA (or ICA) framework, information regarding the probability distributions of the sources may be available, giving rise to Maximum Likelihood (ML) separation. In recent work we have shown that under the multivariate Gaussian model, with arbitrary temporal covariance matrices (stationary or non-stationary) of the source signals, ML separation requires the solution of a "Sequentially Drilled" Joint Congruence (SeDJoCo) transformation of a set of matrices, which is reminiscent of (but different from) classical joint diagonalization. In this paper we extend our results to the IVA problem, showing how the ML solution for the Gaussian model (with arbitrary covariance and cross-covariance matrices) takes the form of an extended SeDJoCo problem. We formulate the extended problem, derive a condition for the existence of a solution, and propose two iterative solution algorithms. In addition, we derive the induced Cramér-Rao Lower Bound (iCRLB) on the resulting Interference-to-Source Ratios (ISR) matrices, and demonstrate by simulation how the ML separation obtained by solving the extended SeDJoCo problem indeed attains the iCRLB (asymptotically), as opposed to other separation approaches, which cannot exploit prior knowledge regarding the sources' distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源