论文标题

2D dunkl - klein--戈登方程的确切解决方案:库仑电势和klein-gordon振荡器

Exact Solutions of the 2D Dunkl--Klein--Gordon Equation: The Coulomb Potential and the Klein--Gordon Oscillator

论文作者

Mota, R. D., Ojeda-Guillén, D., Salazar-Ramírez, M., Granados, V. D.

论文摘要

我们通过在标准的klein-gordon(kg)方程中更改标准的部分衍生物,在2D中介绍了2D中的dunkl-klein-gordon(dkg)方程。我们表明,角动量的$ z $ - 组件的dunkl衍生物的概括是允许将dkg方程变量分开的原因。然后,我们通过分析和从$ {\ rm su}(1,1)$代数的观点计算DKG方程的能量光谱和dkg方程的特征函数。最后,我们表明,如果dunkl衍生物的参数消失,则获得的结果可将其适当地减少到文献中针对这些2D问题的文献报道的结果。

We introduce the Dunkl--Klein--Gordon (DKG) equation in 2D by changing the standard partial derivatives by the Dunkl derivatives in the standard Klein--Gordon (KG) equation. We show that the generalization with Dunkl derivative of the $z$-component of the angular momentum is what allows the separation of variables of the DKG equation. Then, we compute the energy spectrum and eigenfunctions of the DKG equations for the 2D Coulomb potential and the Klein--Gordon oscillator analytically and from an ${\rm su}(1,1)$ algebraic point of view. Finally, we show that if the parameters of the Dunkl derivative vanish, the obtained results suitably reduce to those reported in the literature for these 2D problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源