论文标题

hibi品种和国旗品种的半脱位

Semitoric degenerations of Hibi varieties and flag varieties

论文作者

Feigin, Evgeny, Makhlin, Igor

论文摘要

我们为每个有限分布晶格的Hibi品种构建了一个平坦的半牙本质变性。每种变性的不可还原成分是与形成基础POSET阶级多层阶数的多面体相关的复曲面品种。这些成分本身就是hibi品种。对于我们家庭中的每一次变性,我们还定义了相应的重量多层,并将变性嵌入相关的孢子型变种中,作为一组面部给出的轨道闭合。每个这样的重量多层人士都会在订单的多层板上投影,其中所选的面孔投射到相应的常规细分的各个部分。我们应用这些结构来为每种类型的grassmannian和完整的旗帜品种获​​得一个平坦的半剂变性。

We construct a family of flat semitoric degenerations for the Hibi variety of every finite distributive lattice. The irreducible components of each degeneration are the toric varieties associated with polytopes forming a regular subdivision of the order polytope of the underlying poset. These components are themselves Hibi varieties. For each degeneration in our family we also define the corresponding weight polytope and embed the degeneration into the associated toric variety as the union of orbit closures given by a set of faces. Every such weight polytope projects onto the order polytope with the chosen faces projecting into the parts of the corresponding regular subdivision. We apply these constructions to obtain a family of flat semitoric degenerations for every type A Grassmannian and complete flag variety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源