论文标题

使用深神经网络识别通量绳签名

Identifying Flux Rope Signatures Using a Deep Neural Network

论文作者

Santos, Luiz F. G. dos, Narock, Ayris, Nieves-Chinchilla, Teresa, Nuñez, Marlon, Kirk, Michael

论文摘要

在空间天气中目前面临的挑战中,主要的挑战之一是预测星际冠状质量弹出(ICMES)内的内部磁性构型。当前,观察到的单调且相干的磁构型与航天器与螺旋磁场线拓扑横穿大型通量绳的结果有关。这种安排的分类对于预测地磁干扰至关重要。因此,分类依赖于ICME内部结构是组织良好的磁通绳的假设。本文应用机器学习和当前的物理通量绳分析模型来识别和进一步了解ICMES的内部结构。我们培训了一个具有分析通量绳数据的图像识别人工神经网络,该网络是由圆柱(圆形和椭圆形横截面)模型中许多可能的轨迹范围产生的。然后,在1995 - 2015年期间,对受过训练的网络进行了针对Wind观察到的ICMES的评估。 本文开发的方法可以正确地对84%的简单实际病例进行分类,并且在扩展到更广泛的设置中,成功率具有76%的成功率,但施加了5%的噪声,尽管它确实表现出偏见,而有利于阳性助理绳索分类。作为迈向概括分类和参数化工具的第一步,这些结果表明了希望。通过进一步的调整和改进,我们的模型具有强大的潜力,可以发展为可识别原位数据磁通绳构型的强大工具。

Among the current challenges in Space Weather, one of the main ones is to forecast the internal magnetic configuration within Interplanetary Coronal Mass Ejections (ICMEs). Currently, a monotonic and coherent magnetic configuration observed is associated with the result of a spacecraft crossing a large flux rope with helical magnetic field lines topology. The classification of such an arrangement is essential to predict geomagnetic disturbance. Thus, the classification relies on the assumption that the ICME's internal structure is a well organized magnetic flux rope. This paper applies machine learning and a current physical flux rope analytical model to identify and further understand the internal structures of ICMEs. We trained an image recognition artificial neural network with analytical flux rope data, generated from the range of many possible trajectories within a cylindrical (circular and elliptical cross-section) model. The trained network was then evaluated against the observed ICMEs from WIND during 1995-2015. The methodology developed in this paper can classify 84% of simple real cases correctly and has a 76% success rate when extended to a broader set with 5% noise applied, although it does exhibit a bias in favor of positive flux rope classification. As a first step towards a generalizable classification and parameterization tool, these results show promise. With further tuning and refinement, our model presents a strong potential to evolve into a robust tool for identifying flux rope configurations from in situ data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源