论文标题
Match4Rec:一种基于双向编码器表示的新型建议算法,具有匹配任务
Match4Rec: A Novel Recommendation Algorithm Based on Bidirectional Encoder Representation with the Matching Task
论文作者
论文摘要
表征用户的兴趣准确地在有效的推荐系统中起着重要作用。顺序推荐系统可以从连续的用户信息交互和动态用户的偏好中学习强大的用户隐藏表示。为了分析此类顺序数据,常规方法主要包括马尔可夫链(MCS)和复发性神经网络(RNN)。最近,使用自我注意机制和双向架构引起了很多关注。但是,以前的作品中仍然存在一个主要限制,即它们仅在行为序列中分别和本地对用户的主要目的进行建模,并且它们缺乏对用户整个顺序行为的全局表示。为了解决此限制,我们提出了一种新颖的双向顺序推荐算法,该算法将用户的本地目的与匹配任务的加法监督进行了整合。我们将蒙版任务与双向编码器的训练过程中的匹配任务相结合。还引入了一种新的样品生产方法,以减轻掩模噪声的影响。我们提出的模型不仅可以从用户的行为序列中学习双向语义,而且可以明确生产用户表示以捕获用户的全局偏好。广泛的经验研究表明,我们的方法的表现要优于各种最新模型。
Characterizing users' interests accurately plays a significant role in an effective recommender system. The sequential recommender system can learn powerful hidden representations of users from successive user-item interactions and dynamic users' preferences. To analyze such sequential data, conventional methods mainly include Markov Chains (MCs) and Recurrent Neural Networks (RNNs). Recently, the use of self-attention mechanisms and bi-directional architectures have gained much attention. However, there still exists a major limitation in previous works that they only model the user's main purposes in the behavioral sequences separately and locally, and they lack the global representation of the user's whole sequential behavior. To address this limitation, we propose a novel bidirectional sequential recommendation algorithm that integrates the user's local purposes with the global preference by additive supervision of the matching task. We combine the mask task with the matching task in the training process of the bidirectional encoder. A new sample production method is also introduced to alleviate the effect of mask noise. Our proposed model can not only learn bidirectional semantics from users' behavioral sequences but also explicitly produces user representations to capture user's global preference. Extensive empirical studies demonstrate our approach considerably outperforms various state-of-the-art models.