论文标题
具有高斯时钟场的量子重力的半经典极限的功能性schrodinger方程
The Functional Schrodinger Equation in the Semiclassical Limit of Quantum Gravity with a Gaussian Clock Field
论文作者
论文摘要
我们以量子几何动力学的半经典极限,具有高斯不连贯的灰尘,在弯曲的时空中得出量子场的功能性schrodinger方程。我们使用平方planck质量功能的波功能的WKB型扩展执行半经典极限。我们获得的功能性Schrodinger方程表现出功能性时间衍生物,该功能时间衍生物完成了弯曲时空的通常定义,并且在Minkowski SpaceTime中恢复了通常的Schrodinger-type Evolution。
We derive the functional Schrodinger equation for quantum fields in curved spacetime in the semiclassical limit of quantum geometrodynamics with a Gaussian incoherent dust acting as a clock field. We perform the semiclassical limit using a WKB-type expansion of the wave functional in powers of the squared Planck mass. The functional Schrodinger equation that we obtain exhibits a functional time derivative that completes the usual definition of WKB time for curved spacetime, and the usual Schrodinger-type evolution is recovered in Minkowski spacetime.