论文标题
Kerr-Newman-De保姆的双重零坐标系的规律性
Regularity of a double null coordinate system for Kerr-Newman-de Sitter spacetimes
论文作者
论文摘要
我们为Kerr-Newman-de保姆空间构建双重零坐标系统$(U,V,θ_\ star,ϕ_ \ star)$ “杆”)。零坐标允许人们立即扩展一些先前证明的Kerr结果。例如,我们说明了Sbierski在黑洞内部的波动方程,对于Reissner-Nordström和Kerr SpaceTimes,如何适用于Kerr-Newman-de Sitter SpaceTimes。
We construct a double null coordinate system $(u,v,θ_\star,ϕ_\star)$ for Kerr-Newman-de Sitter spacetimes and prove that the two-spheres given by the intersection of the hypersurfaces $u=\mbox{constant}$ and $v=\mbox{constant}$ are $C^\infty$ in Boyer-Lindquist coordinates (including at the "poles"). The null coordinates allow one to immediately extend some results previously proven for Kerr. As an example, we illustrate how Sbierski's result, for the wave equation on the black hole interior, for Reissner-Nordström and Kerr spacetimes, applies to Kerr-Newman-de Sitter spacetimes.