论文标题
GraphSail:图形结构注意推荐系统的增量学习
GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems
论文作者
论文摘要
考虑到通过在线服务收集信息的便利性,建议系统现在消耗大规模数据,并在改善用户体验中发挥更重要的作用。随着图形神经网络(GNN)的最新出现,基于GNN的推荐模型显示了将推荐系统建模为用户 - 项目两部分图的优势,以了解用户和项目的表示形式。但是,此类型号的训练昂贵,并且难以执行频繁的更新以提供最新的建议。在这项工作中,我们建议通过逐步更新基于GNN的建议模型,以便可以大大减少计算时间,并可以更频繁地更新模型。我们开发了一个图形结构,了解增量学习框架,即Graphsail,以解决以增量方式训练模型时发生的常见的灾难性遗忘问题。我们的方法保留了用户在增量模型更新期间用户的长期偏好(或项目的长期属性)。 GraphSail实现了图形结构保存策略,该策略分别明确保留了每个节点的本地结构,全局结构和自我信息。我们认为,我们的增量培训框架是针对基于GNN的推荐系统量身定制的首次尝试,并且与两个公共数据集上的其他增量学习技术相比,它证明了它的改进。我们进一步验证框架在大型工业数据集上的有效性。
Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-based recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a user's long-term preference (or an item's long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each node's local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.