论文标题

ICS助理:智能客户查询解决方案建议大型电子商务企业的在线客户服务建议

ICS-Assist: Intelligent Customer Inquiry Resolution Recommendation in Online Customer Service for Large E-Commerce Businesses

论文作者

Fu, Min, Guan, Jiwei, Zheng, Xi, Zhou, Jie, Lu, Jianchao, Zhang, Tianyi, Zhuo, Shoujie, Zhan, Lijun, Yang, Jian

论文摘要

高效且适当的在线客户服务对于大型电子商务业务至关重要。在线客户服务的现有解决方案建议方法无法确定运行时的最佳解决方案,从而导致最终客户的满意度不佳。本文提出了一个新颖的智能框架,称为ICS辅助者,以在运行时为服务人员推荐合适的客户服务解决方案。具体来说,我们开发了一个可概括的两阶段机器学习模型,以识别客户服务方案并根据方案解决映射表确定客户服务解决方案。我们使用与阿里巴巴组的6个月以上的现场研究来实施ICS助理并对其进行评估。在我们的实验中,超过12,000名客户服务人员使用ICS辅助者平均每天服务230,000多个案例。实验结果表明,ICS辅助者显着优于传统的手动方法,并提高解决方案的接受率,解决方案覆盖率,平均服务时间,客户满意度和业务领域的餐饮率分别高达16%,25%,6%,14%和17%。

Efficient and appropriate online customer service is essential to large e-commerce businesses. Existing solution recommendation methods for online customer service are unable to determine the best solutions at runtime, leading to poor satisfaction of end customers. This paper proposes a novel intelligent framework, called ICS-Assist, to recommend suitable customer service solutions for service staff at runtime. Specifically, we develop a generalizable two-stage machine learning model to identify customer service scenarios and determine customer service solutions based on a scenario-solution mapping table. We implement ICS-Assist and evaluate it using an over 6-month field study with Alibaba Group. In our experiment, over 12,000 customer service staff use ICS-Assist to serve for over 230,000 cases per day on average. The experimen-tal results show that ICS-Assist significantly outperforms the traditional manual method, and improves the solution acceptance rate, the solution coverage rate, the average service time, the customer satisfaction rate, and the business domain catering rate by up to 16%, 25%, 6%, 14% and 17% respectively, compared to the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源