论文标题

高阶最佳邻里拉普拉斯矩阵的多视图光谱聚类

Multi-View Spectral Clustering with High-Order Optimal Neighborhood Laplacian Matrix

论文作者

Liang, Weixuan, Zhou, Sihang, Xiong, Jian, Liu, Xinwang, Wang, Siwei, Zhu, En, Cai, Zhiping, Xu, Xin

论文摘要

多视图光谱群集可以通过对跨视图的学习最佳嵌入进行聚类来有效地揭示数据之间的固有群集结构。尽管在各种应用中证明了有希望的性能,但大多数现有方法通常会线性地结合一组预先指定的一阶拉普拉斯矩阵,以构建最佳的拉普拉斯矩阵,这可能会导致有限的表示能力和信息不足。同样,在$ n \ times n $ laplacian矩阵上存储和实施复杂操作会产生密集的存储和计算复杂性。为了解决这些问题,本文首先提出了一种多视图光谱聚类算法,该算法学习了高阶最佳邻域拉普拉斯矩阵,然后将其扩展到后期的Fusion版本,以进行准确,高效的多视图聚类。具体而言,我们提出的算法通过同时搜索一阶和高阶基laplacian矩阵的线性组合的邻域来生成最佳的拉普拉斯矩阵。通过这种方式,增强了学习的最佳拉普拉斯矩阵的代表性能力,这有助于更好地利用数据之间隐藏的高阶连接信息,从而改善了聚类性能。我们设计了一种有效的算法,具有证明的收敛性来解决最终的优化问题。九个数据集的广泛实验结果证明了我们算法与最新方法的优越性,这验证了所提出算法的有效性和优势。

Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data by performing clustering on the learned optimal embedding across views. Though demonstrating promising performance in various applications, most of existing methods usually linearly combine a group of pre-specified first-order Laplacian matrices to construct the optimal Laplacian matrix, which may result in limited representation capability and insufficient information exploitation. Also, storing and implementing complex operations on the $n\times n$ Laplacian matrices incurs intensive storage and computation complexity. To address these issues, this paper first proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix, and then extends it to the late fusion version for accurate and efficient multi-view clustering. Specifically, our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base Laplacian matrices simultaneously. By this way, the representative capacity of the learned optimal Laplacian matrix is enhanced, which is helpful to better utilize the hidden high-order connection information among data, leading to improved clustering performance. We design an efficient algorithm with proved convergence to solve the resultant optimization problem. Extensive experimental results on nine datasets demonstrate the superiority of our algorithm against state-of-the-art methods, which verifies the effectiveness and advantages of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源