论文标题

在您的服务中:机器人助理的建议

At Your Service: Coffee Beans Recommendation From a Robot Assistant

论文作者

de Berardinis, Jacopo, Pizzuto, Gabriella, Lanza, Francesco, Chella, Antonio, Meira, Jorge, Cangelosi, Angelo

论文摘要

随着机器学习领域的进步,精确的推荐系统算法,设想机器人助手会在酒店行业更加出现。此外,COVID-19大流行还强调了在我们的日常生活中拥有更多的服务机器人的必要性,以最大程度地减少人类人类传播的风险。一个这样的例子就是咖啡店,这已经成为我们日常生活的内在。但是,咖啡混合物通常包括丰富的香气,放纵和独特的风味和缠绵的余味,而是咖啡混合物,享用一杯优质的咖啡并不是一件小事。我们的工作通过提出一个计算模型来解决这一问题,该模型建议由用户的喜好产生的最佳咖啡豆。具体而言,鉴于一组咖啡豆特性(目标特征),我们应用不同的监督学习技术来预测咖啡品质(主观特征)。然后,我们考虑一种无监督的学习方法,以分析主观特征空间中咖啡豆之间的关系。根据数字化的评论,在真实的咖啡豆数据集上进行了评估,我们的结果表明,拟议的计算模型允许对咖啡豆预测的建议准确性高达92.7%。由此,我们提出了如何将这种计算模型部署在服务机器人上,以可靠地预测客户的咖啡豆偏好,从用户将其咖啡偏好输入到机器人的机器人推荐最能满足用户喜欢的咖啡豆。

With advances in the field of machine learning, precisely algorithms for recommendation systems, robot assistants are envisioned to become more present in the hospitality industry. Additionally, the COVID-19 pandemic has also highlighted the need to have more service robots in our everyday lives, to minimise the risk of human to-human transmission. One such example would be coffee shops, which have become intrinsic to our everyday lives. However, serving an excellent cup of coffee is not a trivial feat as a coffee blend typically comprises rich aromas, indulgent and unique flavours and a lingering aftertaste. Our work addresses this by proposing a computational model which recommends optimal coffee beans resulting from the user's preferences. Specifically, given a set of coffee bean properties (objective features), we apply different supervised learning techniques to predict coffee qualities (subjective features). We then consider an unsupervised learning method to analyse the relationship between coffee beans in the subjective feature space. Evaluated on a real coffee beans dataset based on digitised reviews, our results illustrate that the proposed computational model gives up to 92.7 percent recommendation accuracy for coffee beans prediction. From this, we propose how this computational model can be deployed on a service robot to reliably predict customers' coffee bean preferences, starting from the user inputting their coffee preferences to the robot recommending the coffee beans that best meet the user's likings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源