论文标题

通过随着时变的混杂因素估算单个治疗效果

Estimating Individual Treatment Effects with Time-Varying Confounders

论文作者

Liu, Ruoqi, Yin, Changchang, Zhang, Ping

论文摘要

从观察数据估算单个治疗效果(ITE)在医疗保健中具有有意义的实用性。现有的工作主要依赖于不存在隐藏混杂因素的强烈无知性假设,这可能会导致估计因果效应的偏见。一些研究认为,隐藏的混杂因素是为静态环境而设计的,并且不容易适应动态环境。实际上,大多数观察数据(例如,电子病历)是自然动态的,并且由顺序信息组成。在本文中,我们提出了深层顺序加权(DSW),用于与时变的混杂因素估算ITE。具体而言,DSW通过使用深层重复的加权神经网络纳入当前的治疗作业和历史信息来侵犯隐藏的混杂因素。隐藏的混杂因素与当前观察到的数据相结合的所学表现可用于潜在的结果和治疗预测。我们计算了重新加权人群的治疗时间变化的逆概率。我们对完全合成,半合成和现实世界数据集进行了全面的比较实验,以评估我们的模型和基准的性能。结果表明,我们的模型可以通过调节观察到的时变和隐藏的混杂因素来产生公正和准确的治疗效果,从而为个性化医学铺平道路。

Estimating the individual treatment effect (ITE) from observational data is meaningful and practical in healthcare. Existing work mainly relies on the strong ignorability assumption that no hidden confounders exist, which may lead to bias in estimating causal effects. Some studies consider the hidden confounders are designed for static environment and not easily adaptable to a dynamic setting. In fact, most observational data (e.g., electronic medical records) is naturally dynamic and consists of sequential information. In this paper, we propose Deep Sequential Weighting (DSW) for estimating ITE with time-varying confounders. Specifically, DSW infers the hidden confounders by incorporating the current treatment assignments and historical information using a deep recurrent weighting neural network. The learned representations of hidden confounders combined with current observed data are leveraged for potential outcome and treatment predictions. We compute the time-varying inverse probabilities of treatment for re-weighting the population. We conduct comprehensive comparison experiments on fully-synthetic, semi-synthetic and real-world datasets to evaluate the performance of our model and baselines. Results demonstrate that our model can generate unbiased and accurate treatment effect by conditioning both time-varying observed and hidden confounders, paving the way for personalized medicine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源