论文标题

单离子各向异性对自旋1海森贝格链中量子纠缠和相关​​性的关键行为的影响

Single-ion anisotropy effects on the critical behaviors of quantum entanglement and correlation in the spin-1 Heisenberg chain

论文作者

Lin, Wanxing, Xu, Yu-Liang, Liu, Zhong-Qiang, Wang, Chun-Yang, Kong, Xiang-Mu

论文摘要

使用量子重新归一化组方法研究了Spin-1海森堡链中的量子纠缠和与单离子各向异性的相关性。负性和量子不和谐(QD)是用各种各向异性参数$ \ bigtriangleup $和单离子各向异性参数$ d $计算的。我们专注于两个上述物理量以及Néel,Haldane和大D相之间的过渡。发现随着系统的大小的增加,消极和QD在不同阶段都表现出类似阶梯的模式。有趣的是,可以使用核电气共振(2020 \ textit {nature} \ textbf {579} 205)调节的单离子各向异性参数$ d $,在调谐系统的量子相变(qpt)中起着重要作用。关于$ d $或$ \ bigtriangleup $的第一个部分衍生物和量子不和谐在相转换点上表现出非分析行为,这直接对应于相关长度的差异。量子相关性临界指数从消极和QD衍生而成,并且是每个临界点处相关长度指数的倒数。这项工作扩展了量子纠缠和相关​​性的应用,作为描述Spin-1系统中QPT的工具。

Quantum entanglement and correlations in the spin-1 Heisenberg chain with single-ion anisotropy are investigated using the quantum renormalization group method. Negativity and quantum discord (QD) are calculated with various anisotropy parameters $\bigtriangleup$ and single-ion anisotropy parameters $D$. We focus on the relations between two abovementioned physical quantities and on transitions between the Néel, Haldane, and Large-D phases. It is found that both negativity and QD exhibit step-like patterns in different phases as the size of the system increases. Interestingly, the single-ion anisotropy parameter $D$, which can be modulated using nuclear electric resonance (2020 \textit{Nature} \textbf{579} 205), plays an important role in tuning the quantum phase transition (QPT) of the system. Both the first partial derivative of the negativity and quantum discord with respect to $D$ or $\bigtriangleup$ exhibit nonanalytic behavior at the phase transition points, which corresponds directly to the divergence of the correlation length. The quantum correlation critical exponents derived from negativity and QD are equal, and are the reciprocal of the correlation length exponent at each critical point. This work extends the application of quantum entanglement and correlations as tools for depicting QPTs in spin-1 systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源