论文标题
Collatz的功能作为自动形态Cayley颜色图:$ AN + B $猜想的可定性,证明$ 3N + 1 $猜想
The Collatz function as an automorphic Cayley colour graph:decidability of $an+b$ conjectures, proof of the $3n + 1$ conjecture
论文作者
论文摘要
Collatz的猜想指出,重复的步骤是$ n \ Mathrm {\ to} \ Mathrm {3} n \ Mathrm {+1} $以奇数数字和$ n \ mathrm {\ to} n \ mathrm {} n \ mathrm {/2} $,均匀地达到行走,等于步行到跨越根路径,即$ 4 \至2 \至1 \至4 \ to \ d \ \ dots $一个连接的Collatz图。 The Collatz graph with reverse arrows $n \to 2n$ and $n \to (n-1)/3$ can be transformed to a 3-regular automorphic Cayley color graph $T_{\ge 0}$ with as nodes the branching numbers with a remainder of $4$ or $16$ when divided by $18$, building the congruence classes $[4,16]_{18}$.将$ 2^k $广度的第一个订购的根路径标记为二进制数字行上的$ 2^k $二进制数字,以$ k = 1,2,3,\ dots $,并将它们与这些根路径的$ 2^k $输出数字配对,提供$ 2^K $配对的数字。这些配对的分支数的3个常规cayley图可以转换为4型中间页面图。该4个规格图从一致性类$ [4,16] _ {18} $的所有配对分支数字提供了一个唯一的Eulerian Tour to and the Trivial Root Number Number对{0,C = 4}。这证明了Collatz的$ 3N+1 $猜想。特定的$ AN+B $猜想是否可以通过对其所有配对的分支数字进行Eulerian巡回演出。
The Collatz conjecture states that repeated steps of $n\mathrm{\to }\mathrm{3}n\mathrm{+1}$ at odd numbers and $n\mathrm{\to }n\mathrm{/2}$ at even numbers amount to walks over root paths to the branching number $c=4$ in the `trivial' cyclic root $4\to 2\to 1\to 4\to \dots $ of one connected Collatz graph. The Collatz graph with reverse arrows $n \to 2n$ and $n \to (n-1)/3$ can be transformed to a 3-regular automorphic Cayley color graph $T_{\ge 0}$ with as nodes the branching numbers with a remainder of $4$ or $16$ when divided by $18$, building the congruence classes $[4,16]_{18}$. Labeling the $2^k$ breadth-first ordered root paths with $2^k$ binary numbers on the binary number line, for $k=1,2,3,\dots$, and pairing them with the $2^k$ output numbers of these root paths, gives $2^k$ paired numbers. The 3-regular Cayley graph of these paired branching numbers can be transformed to a 4-regular Middle Pages graph. This 4-regular graph offers to all paired branching numbers from the congruence classes $[4,16]_{18}$ a unique Eulerian tour to and from the trivial root number pair {0,c=4}. This proves Collatz's $3n+1$ conjecture. Whether a specific $an+b$ conjecture offers a Eulerian tour to all its paired branching numbers can be decided by whether it offers such a tour to paired branching numbers lower than $2a^3$.