论文标题
在巨大的恒星形成中建模磁盘碎片和多样性
Modeling disk fragmentation and multiplicity in massive star formation
论文作者
论文摘要
我们研究了围绕形成大量原始恒星的积聚盘的形成和早期进化和碎片化。我们使用基于网格的自重辐射流动力学代码,包括用于恒星和尘埃演化的子网格模块。我们故意不使用水槽粒子来允许所有碎片形成和破坏的路径,而是要保持空间网格分辨率足够高以正确解决问题的物理长度尺度。我们在球形坐标中使用3D网格,并在径向方向上进行对数缩放,并在极性方向上缩放余弦。因此,使用了对应于$ \ sim的2600万美元网格单元的网格电池总数的大约25%,用于对磁盘物理进行建模。它们构成了迄今为止在形成巨大恒星周围的磁盘碎片上执行的最高分辨率模拟,此处考虑了物理学。我们通过针对5种不同的分辨率进行相同的模拟来研究结果的收敛性。我们从分子云的崩溃开始。在其中心形成了一个巨大的(原始)恒星,周围是用螺旋臂的碎片样片状积聚磁盘。这些片段的质量为$ \ sim 1 m_ \ odot $,它们与磁盘,螺旋臂和其他碎片的连续相互作用导致偏心轨道。碎片形成静水核心,周围环绕着辅助磁盘,螺旋臂也产生了新的碎片。我们确定了碎片形成,相互作用和破坏的几种机制。碎片的中心温度可以达到氢解离极限,形成第二拉森岩心并演变成伴侣恒星。基于此,我们研究了模拟预测的多重性,并在与主要的光谱倍数到1000至2000 au之间的距离上找到了$ \ sim 6 $伴侣在不同的距离:从可能的光谱倍数到伴侣。
We investigate the formation and early evolution and fragmentation of an accretion disk around a forming massive protostar. We use a grid-based self-gravity-radiation-hydrodynamics code including a sub-grid module for stellar and dust evolution. On purpose, we do not use sink particles to allow for all paths of fragment formation and destruction, but instead keeping the spatial grid resolution high enough to properly resolve the physical length scales of the problem. We use a 3D grid in spherical coordinates with a logarithmic scaling in the radial direction and cosine scaling in the polar direction. Because of that, roughly 25% of the total number of grid cells, corresponding to $\sim$ 26 million grid cells, are used to model the disk physics. They constitute the highest resolution simulations performed up to now on disk fragmentation around a forming massive star with the physics considered here. We study the convergence of our results by performing the same simulation for 5 different resolutions. We start from the collapse of a molecular cloud; a massive (proto)star is formed in its center, surrounded by a fragmenting Keplerian-like accretion disk with spiral arms. The fragments have masses of $\sim 1 M_\odot$, and their continuous interactions with the disk, spiral arms and other fragments results in eccentric orbits. Fragments form hydrostatic cores, surrounded by secondary disks with spiral arms that also produce new fragments. We identified several mechanisms of fragment formation, interaction and destruction. Central temperatures of the fragments can reach the hydrogen dissociation limit, form second Larson cores and evolve into companion stars. Based on this, we study the multiplicity predicted by the simulations and find $\sim 6$ companions at different distances from the primary: from possible spectroscopic multiples, to companions at distances between 1000 and 2000 au.