论文标题

可扩展的结构信息对形成能的预测,具有改善的精度和可用性,采用神经网络

Extensible Structure-Informed Prediction of Formation Energy with Improved Accuracy and Usability employing Neural Networks

论文作者

Krajewski, Adam M., Siegel, Jonathan W., Xu, Jinchao, Liu, Zi-Kui

论文摘要

在本文中,我们引入了一种新的基于神经网络的工具,以基于Voronoi-Tessellated材料的元素和结构特征来预测原子结构的形成能。我们简要概述了机器学习与真实材料 - 陶艺关系之间的联系,如何通过降低过度拟合,如何将新数据纳入模型中,以将其调整到特定的材料系统中,以及使用模型预先形成局部结构放宽的初步结果。 目前的工作导致了针对(1)开放量子材料数据库(OQMD)的最高测试准确性优化的三个最终模型,(2)在发现新材料时的性能,以及(3)以低计算成本的性能。在从OQMD中随机选择的21,800种化合物的测试集中,它们的平均绝对误差(MAE)分别为28、40和42 MEV/ATOM。第二个模型在OQMD中不存在感兴趣的测试案例中提供了更好的预测,而第三个模型将计算成本降低了8倍。 我们以一种称为Sipfenn的新开源工具(使用神经网络对形成能的结构预测)收集结果。 Sipfenn不仅提高了现有模型以外的精度,而且还以预先训练的神经网络和GUI接口的形式发货。鉴于此,它可以以几乎没有成本包含在DFT计算中。

In the present paper, we introduce a new neural network-based tool for the prediction of formation energies of atomic structures based on elemental and structural features of Voronoi-tessellated materials. We provide a concise overview of the connection between the machine learning and the true material-property relationship, how to improve the generalization accuracy by reducing overfitting, how new data can be incorporated into the model to tune it to a specific material system, and preliminary results on using models to preform local structure relaxations. The present work resulted in three final models optimized for (1) highest test accuracy on the Open Quantum Materials Database (OQMD), (2) performance in the discovery of new materials, and (3) performance at a low computational cost. On a test set of 21,800 compounds randomly selected from OQMD, they achieve a mean absolute error (MAE) of 28, 40, and 42 meV/atom, respectively. The second model provides better predictions in a test case of interest not present in the OQMD, while the third reduces the computational cost by a factor of 8. We collect our results in a new open-source tool called SIPFENN (Structure-Informed Prediction of Formation Energy using Neural Networks). SIPFENN not only improves the accuracy beyond existing models but also ships in a ready-to-use form with pre-trained neural networks and a GUI interface. By virtue of this, it can be included in DFT calculations routines at nearly no cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源