论文标题

关于当前中微子望远镜的大耀斑的检测潜力

On the Detection Potential of Blazar Flares for Current Neutrino Telescopes

论文作者

Kreter, M., Kadler, M., Krauß, F., Mannheim, K., Buson, S., Ojha, R., Wilms, J., Böttcher, M.

论文摘要

大型喷气机是极端环境,其中相对论质子与紫外光子场的相互作用可能导致光的产生。单个高能中微子与大耀斑的高信心关联可以通过空间和时间上一致的检测来实现。 2017年,发现类似于轨道的高能中微子事件IC 170922a与Blazar TXS 0506+056的$γ$ ray排放量增加,从而确定了迄今为止最有前途的中微子点源候选者。我们基于在\ textit {fermi}/lat观测中观察到的明亮短期短期大耀斑的宽带参数化,计算了可以用iCecube检测到的中微子事件的预期数量。我们发现,大多数单独的燃烧耀斑的综合kev-to-gev​​通力太小了,无法产生大量的泊松概率,以检测一个或多个中微子,以icecube检测一个或多个中微子。我们表明,来自单个Blazar耀斑的潜在可检测到的高能中微子的样本相当小。我们进一步表明,Blazars 3C 279和PKS 1510 $ - $ 089主导着明亮和短期的Blazar耀斑的全天成中微子预测。最后,我们讨论了在IceCube和KM3NET的未来数据中寻找更重要关联的策略。

Blazar jets are extreme environments, in which relativistic proton interactions with an ultraviolet photon field could give rise to photopion production. High-confidence associations of individual high-energy neutrinos with blazar flares could be achieved via spatially and temporally coincident detections. In 2017, the track-like, extremely high-energy neutrino event IC 170922A was found to coincide with increased $γ$-ray emission from the blazar TXS 0506+056, leading to the identification of the most promising neutrino point source candidate so far. We calculate the expected number of neutrino events that can be detected with IceCube, based on a broadband parametrization of bright short-term blazar flares that were observed in the first 6.5 years of \textit{Fermi}/LAT observations. We find that the integrated keV-to-GeV fluence of most individual blazar flares is far too small to yield a substantial Poisson probability for the detection of one or more neutrinos with IceCube. We show that the sample of potentially detectable high-energy neutrinos from individual blazar flares is rather small. We further show that the blazars 3C 279 and PKS 1510$-$089 dominate the all-sky neutrino prediction from bright and short-term blazar flares. In the end, we discuss strategies to search for more significant associations in future data unblindings of IceCube and KM3NeT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源