论文标题

全球本地化和绑架的深度可采光观察模型

Deep Samplable Observation Model for Global Localization and Kidnapping

论文作者

Chen, Runjian, Yin, Huan, Jiao, Yanmei, Dissanayake, Gamini, Wang, Yue, Xiong, Rong

论文摘要

全球本地化和绑架是机器人本地化的两个具有挑战性的问题。流行的方法蒙特卡洛本地化(MCL)通过迭代地用“采样加权”循环更新一组粒子来解决该问题。采样对MCL的性能决定性[1]。但是,传统的MCL只能从状态空间上的均匀分布中采样。尽管MCL的变体提出了不同的采样模型,但它们无法在场景中提供准确的分布或推广。为了更好地解决这些问题,我们提出了一个分发建议模型,称为“深度可采样”观测模型(DSOM)。 DSOM作为输入并输出姿势的条件多模式概率分布,进行映射和2D激光扫描,使样本更加专注于具有较高可能性的区域。使用此类样本,预计收敛效率更有效。考虑到基于学习的抽样模型有时可能无法捕获真正的姿势,我们此外提出了自适应混合物MCL(ADAM MCL),该混合物MCL(ADAM MCL)部署了一种可信赖的机制来适应每个粒子的更新模式以容忍这种情况。与综合场景和真实场景中的先前方法相比,Adam MCL配备了DSOM,可以实现更准确的估计,更快的收敛性和更好的可伸缩性。即使在具有长期变化的真实环境中,Adam MCL也能够使用仅通过SLAM MAP或BLUEPRINT图的模拟观测来训练的DSOM来定位机器人。

Global localization and kidnapping are two challenging problems in robot localization. The popular method, Monte Carlo Localization (MCL) addresses the problem by iteratively updating a set of particles with a "sampling-weighting" loop. Sampling is decisive to the performance of MCL [1]. However, traditional MCL can only sample from a uniform distribution over the state space. Although variants of MCL propose different sampling models, they fail to provide an accurate distribution or generalize across scenes. To better deal with these problems, we present a distribution proposal model, named Deep Samplable Observation Model (DSOM). DSOM takes a map and a 2D laser scan as inputs and outputs a conditional multimodal probability distribution of the pose, making the samples more focusing on the regions with higher likelihood. With such samples, the convergence is expected to be more effective and efficient. Considering that the learning-based sampling model may fail to capture the true pose sometimes, we furthermore propose the Adaptive Mixture MCL (AdaM MCL), which deploys a trusty mechanism to adaptively select updating mode for each particle to tolerate this situation. Equipped with DSOM, AdaM MCL can achieve more accurate estimation, faster convergence and better scalability compared to previous methods in both synthetic and real scenes. Even in real environments with long-term changing, AdaM MCL is able to localize the robot using DSOM trained only by simulation observations from a SLAM map or a blueprint map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源