论文标题

CMR细分的质量了解的半监督学习

Quality-aware semi-supervised learning for CMR segmentation

论文作者

Ruijsink, Bram, Puyol-Anton, Esther, Li, Ye, Bai, Wenja, Kerfoot, Eric, Razavi, Reza, King, Andrew P.

论文摘要

开发有关医学图像分割的深度学习算法的挑战之一是缺乏注释的培训数据。为了克服这一局限性,已经开发了数据增强和半监督学习(SSL)方法。但是,这些方法的有效性有限,因为它们要么仅利用现有数据集(数据增强)或通过添加不良的培训示例(SSL)来影响负面影响。分割很少是医学图像分析的最终产物 - 它们通常用于下游任务以推断高阶模式以评估疾病。在评估图像分析结果时,临床医生考虑了有关生物物理学和生理学的大量知识。我们已经在以前的工作中使用了这些临床评估来创建可靠的质量控制(QC)分类器来进行自动心脏磁共振(CMR)分析。在本文中,我们提出了一种新的方案,该方案使用下游任务的QC来识别CMR分割网络的高质量输出,后来用于进一步的网络培训。从本质上讲,这为分割网络的SSL变体(semiqcseg)提供了质量意识的培训数据的质量增强。我们使用UK Biobank数据和两个常用的网络体系结构(U-NET和一个完全卷积的网络),在两个CMR分割任务(主动脉和短轴心脏体积分割)中评估我们的方法,并与受监督和SSL策略进行比较。我们表明,SemiqCSEG改善了分割网络的培训。它减少了对标记数据的需求,同时在骰子和临床指标方面超过了其他方法。当稀缺标记的数据集时,SemiqCSEG可以是训练分割网络的有效方法。

One of the challenges in developing deep learning algorithms for medical image segmentation is the scarcity of annotated training data. To overcome this limitation, data augmentation and semi-supervised learning (SSL) methods have been developed. However, these methods have limited effectiveness as they either exploit the existing data set only (data augmentation) or risk negative impact by adding poor training examples (SSL). Segmentations are rarely the final product of medical image analysis - they are typically used in downstream tasks to infer higher-order patterns to evaluate diseases. Clinicians take into account a wealth of prior knowledge on biophysics and physiology when evaluating image analysis results. We have used these clinical assessments in previous works to create robust quality-control (QC) classifiers for automated cardiac magnetic resonance (CMR) analysis. In this paper, we propose a novel scheme that uses QC of the downstream task to identify high quality outputs of CMR segmentation networks, that are subsequently utilised for further network training. In essence, this provides quality-aware augmentation of training data in a variant of SSL for segmentation networks (semiQCSeg). We evaluate our approach in two CMR segmentation tasks (aortic and short axis cardiac volume segmentation) using UK Biobank data and two commonly used network architectures (U-net and a Fully Convolutional Network) and compare against supervised and SSL strategies. We show that semiQCSeg improves training of the segmentation networks. It decreases the need for labelled data, while outperforming the other methods in terms of Dice and clinical metrics. SemiQCSeg can be an efficient approach for training segmentation networks for medical image data when labelled datasets are scarce.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源