论文标题
$ t \叠加{t} $ - $ q $ -yang-mills理论的变形
$T\overline{T}$-deformation of $q$-Yang-Mills theory
论文作者
论文摘要
我们得出了$ t \ Overline {t} $ - 二维$ q $ q $ demformed yang-mills理论在任意的riemann表面上,通过将未扰动的理论耦合在第一阶形式主义中与jackiw-teitelboim teiteitelboim bloity耦合。我们表明,$ t \叠加{t} $ - 变形导致与Chern-Simons理论在Seifert歧管上的联系以及大型$ N $分解中的联系,并将其分解为手性和反性手续部门。对于球体上的$ u(n)$仪表理论,我们表明大型$ n $相转换持续存在,并且是三阶的,并由instantons诱导。 $ t \叠加{t} $ - 变形的效果是降低't hooft耦合的临界值,并扩展发生相变的线束类别的类别。显示出相同的结果以$(q,t)$ - 变形的杨米尔斯理论成立。我们还明确评估了Yang-Mills理论的大$ n $限制的纠缠熵,表明$ t \ overline {t} $ - 变形降低了Boltzmann熵的贡献。
We derive the $T\overline{T}$-perturbed version of two-dimensional $q$-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the $T\overline{T}$-deformation results in a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large $N$ factorization into chiral and anti-chiral sectors. For the $U(N)$ gauge theory on the sphere, we show that the large $N$ phase transition persists, and that it is of third order and induced by instantons. The effect of the $T\overline{T}$-deformation is to decrease the critical value of the 't Hooft coupling, and also to extend the class of line bundles for which the phase transition occurs. The same results are shown to hold for $(q,t)$-deformed Yang-Mills theory. We also explicitly evaluate the entanglement entropy in the large $N$ limit of Yang-Mills theory, showing that the $T\overline{T}$-deformation decreases the contribution of the Boltzmann entropy.