论文标题

核对真空激光加速理论和实验

Reconciling vacuum laser acceleration theory and experiment

论文作者

Hegelich, B. Manuel, Labun, Lance, Labun, Ou Z.

论文摘要

聚焦激光脉冲中单电力动力学的经典理论是相对论浮动量(RPF)的基础,这反过来又基于激光 - 聚光 - 播出动力学的模型,也是新型强场辐射动力学的发现。尽管存在这种基础的重要性,但在实验中是否已经观察到了在真空中观察到的单一电子加速度的共识。我们分析了Malka等人的实验。 (1998)关于建模中忽略的几个特征,这些特征可以恢复理论预测和实验数据之间的一致性。对与错的脉冲轮廓函数,激光参数或初始电子分布可以使预测和数据之间达成一致性。电子与脉冲开始相互作用的激光阶段具有很大的影响,这解释了为什么通过高Z原子的光电离和从等离子体镜弹出的电子中,在焦点区域中释放的电子能够实现更大的能量。最后,我们估计典型的电子光谱中的误差,该光谱是由最先进的超偏见激光设施中焦点斑点大小波动引起的。我们的结果强调了彻底表征激光参数的重要性,以实现定量准确的预测和发现科学所需的精度。

The classical theory of single-electron dynamics in focused laser pulses is the foundation of both the relativistic ponderomotive force (RPF), which in turn underlies models of laser-collective-plasma dynamics, and the discovery of novel strong-field radiation dynamics. Despite this bedrock importance, consensus eludes the community as to whether acceleration of single electrons in vacuum has been observed in experiment. We analyze the experiment of Malka et al. (1998) with respect to several features that were neglected in modeling and that can restore consistency between theory predictions and experimental data. The right or wrong pulse profile function, laser parameters, or initial electron distribution each can make or break the agreement between predictions and data. The laser phase at which the electron's interaction with the pulse begins has a large effect, explaining why much larger energies are achieved by electrons liberated in the focal region by photoionization from high-Z atoms and by electrons ejected from a plasma mirror. Finally we estimate the error in a typical electron spectrum arising from fluctuating focal spot size in state-of-the-art ultra-relativistic laser facilities. Our results emphasize the importance of thoroughly characterizing laser parameters in order to achieve quantitatively accurate predictions and the precision required for discovery science.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源