论文标题

使用知觉深图像先验的无监督的单像反射分离

Unsupervised Single-Image Reflection Separation Using Perceptual Deep Image Priors

论文作者

Kim, Suhong, RahmaniKhezri, Hamed, Nourbakhsh, Seyed Mohammad, Hefeeda, Mohamed

论文摘要

反射通常通过阻碍背景场景来降低图像的质量。对于日常用户而言,这是不可取的,并且对通过反射处理图像进行多媒体应用程序的性能产生负面影响。大多数消除反射的当前方法都使用监督学习模型。但是,这些模型需要大量的图像对才能表现良好,尤其是在具有反射的自然图像上,在实践中很难实现。在本文中,我们提出了一个新颖的无监督框架,以进行单像反射分离。我们没有从大型数据集中学习,而是优化了目标图像上两个交叉耦合深卷积网络的参数,以生成两个独家背景和反射层。特别是,我们设计了网络的新体系结构,以从预先训练的深层分类网络中提取的嵌入语义特征,从而提供了类似于人类感知的更有意义的分离。文献中常用数据集的定量和定性结果表明,我们的方法的性能至少与最先进的监督方法相当,偶尔在不需要大型培训数据集的情况下更好。我们的结果还表明,我们的方法在文献中显着胜过最接近的无监督方法,用于消除单个图像的反射。

Reflections often degrade the quality of the image by obstructing the background scene. This is not desirable for everyday users, and it negatively impacts the performance of multimedia applications that process images with reflections. Most current methods for removing reflections utilize supervised-learning models. However, these models require an extensive number of image pairs to perform well, especially on natural images with reflection, which is difficult to achieve in practice. In this paper, we propose a novel unsupervised framework for single-image reflection separation. Instead of learning from a large dataset, we optimize the parameters of two cross-coupled deep convolutional networks on a target image to generate two exclusive background and reflection layers. In particular, we design a new architecture of the network to embed semantic features extracted from a pre-trained deep classification network, which gives more meaningful separation similar to human perception. Quantitative and qualitative results on commonly used datasets in the literature show that our method's performance is at least on par with the state-of-the-art supervised methods and, occasionally, better without requiring large training datasets. Our results also show that our method significantly outperforms the closest unsupervised method in the literature for removing reflections from single images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源