论文标题
通过旋转的潜在表示在自组织过程中探索粒子动力学
Exploring particle dynamics during self-organization processes via rotationally invariant latent representations
论文作者
论文摘要
使用机器学习工作流程探索了具有蛋白质自由组装的主动旋转自由度的复杂排序系统的动态,该机器学习工作流程结合了基于深度学习的语义分割和基于旋转的不变性自动编码器基于方向和形状演化的分析。后者允许将粒子取向与其他自由度的脱离,并补偿转移。潜在空间中的分离表示形式编码了局部过渡的丰富光谱,这些局部转换现在可以通过连续变量进行可视化和探索。集合平均值的时间依赖性可以深入了解系统的时间动力学,尤其是说明了潜在排序过渡的存在。最后,对沿单粒子轨迹的潜在变量的分析允许在单个粒子级别上追踪这些参数。预计所提出的方法将普遍适用于在光学,扫描探针和电子显微镜中的成像数据的描述,以便了解旋转是该过程重要组成部分的复杂系统的动力学。
The dynamic of complex ordering systems with active rotational degrees of freedom exemplified by protein self-assembly is explored using a machine learning workflow that combines deep learning-based semantic segmentation and rotationally invariant variational autoencoder-based analysis of orientation and shape evolution. The latter allows for disentanglement of the particle orientation from other degrees of freedom and compensates for shifts. The disentangled representations in the latent space encode the rich spectrum of local transitions that can now be visualized and explored via continuous variables. The time dependence of ensemble averages allows insight into the time dynamics of the system, and in particular, illustrates the presence of the potential ordering transition. Finally, analysis of the latent variables along the single-particle trajectory allows tracing these parameters on a single particle level. The proposed approach is expected to be universally applicable for the description of the imaging data in optical, scanning probe, and electron microscopy seeking to understand the dynamics of complex systems where rotations are a significant part of the process.