论文标题
光子计数的通用性低于分叉阈值
Universality of photon counting below a bifurcation threshold
论文作者
论文摘要
在分叉点,参数的略有变化会导致系统的定性变化。量子波动消除了这种突然的转变,并能够在经典分叉阈值以下的量化能量发射。接近分叉点,由此产生的光子计数统计量取决于不稳定性。我们提出了一种通用方法,以基于马丁·西格吉亚 - 罗斯(Martin-Siggia-Rose)动作的普遍性,得出接近分叉阈值的光子计数的特征函数,该方法仅取决于动力学和分叉的类型。我们为没有保护定律的灾难提供明确的表达。此外,我们提出了使用驱动的约瑟夫森连接的实验设置,该设置既表现出折叠式和干草叉分叉行为,却接近尖峰灾难。
At a bifurcation point, a small change of a parameter causes a qualitative change in the system. Quantum fluctuations wash out this abrupt transition and enable the emission of quantized energy, which we term photons, below the classical bifurcation threshold. Close to the bifurcation point, the resulting photon counting statistics is determined by the instability. We propose a generic method to derive a characteristic function of photon counting close to a bifurcation threshold that only depends on the dynamics and the type of bifurcation, based on the universality of the Martin-Siggia-Rose action. We provide explicit expressions for the cusp catastrophe without conservation laws. Moreover, we propose an experimental setup using driven Josephson junctions that exhibits both a fold and a pitchfork bifurcation behavior close to a cusp catastrophe.