论文标题

真实的图像超级分辨率通过GP-NAS通过异质模型集合结合

Real Image Super Resolution Via Heterogeneous Model Ensemble using GP-NAS

论文作者

Pan, Zhihong, Li, Baopu, Xi, Teng, Fan, Yanwen, Zhang, Gang, Liu, Jingtuo, Han, Junyu, Ding, Errui

论文摘要

随着深度神经网络(DNN)的进步,使用具有密集的跳过连接的深层残留网络,最新的最新图像超分辨率(SR)方法已实现了令人印象深刻的性能。尽管这些模型在基准数据集上表现良好,在基准数据集中,低分辨率(LR)图像是根据高分辨率(HR)引用的,具有已知模糊内核,但是当LR-HR对中的两个图像都是从真实摄像机中收集的。基于现有密集的残留网络,利用基于高斯过程的神经体系结构搜索(GP-NAS)方案,通过改变密集的残留块,块大小和功能数量来使用大型搜索空间来找到候选网络架构。选择具有多种网络结构和超参数的异质模型套件以进行模型结算,以在真实图像SR中实现出色的性能。提出的方法在AIM 2020真实图像超级分辨率挑战的所有三个曲目中赢得了第一名。

With advancement in deep neural network (DNN), recent state-of-the-art (SOTA) image superresolution (SR) methods have achieved impressive performance using deep residual network with dense skip connections. While these models perform well on benchmark dataset where low-resolution (LR) images are constructed from high-resolution (HR) references with known blur kernel, real image SR is more challenging when both images in the LR-HR pair are collected from real cameras. Based on existing dense residual networks, a Gaussian process based neural architecture search (GP-NAS) scheme is utilized to find candidate network architectures using a large search space by varying the number of dense residual blocks, the block size and the number of features. A suite of heterogeneous models with diverse network structure and hyperparameter are selected for model-ensemble to achieve outstanding performance in real image SR. The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源