论文标题

特里迪亚尔(Tridiagonal)遗传性toeplitz矩阵的特征值和偏角角扰动

Eigenvalues of tridiagonal Hermitian Toeplitz matrices with perturbations in the off-diagonal corners

论文作者

Grudsky, Sergei M., Maximenko, Egor A., Soto-González, Alejandro

论文摘要

在本文中,我们研究了第一列中的遗体toeplitz矩阵的特征值$ 2,-1,0,\ ldots,0,-α$。请注意,生成符号取决于矩阵的$ n $。如果$ |α| \ le 1 $,则特征值属于$ [0,4] $,并且在$ [0,π] $上的函数$ g(x)= 4 \ sin^2(x/2)$。当$ |α|> 1 $和$ n $倾向于无限时,情况发生了巨大变化。然后,两个极端特征值(最小和最大值)均由$ [0,4] $铺设,并迅速收敛于由$α$的值确定的某些限制,而其他所有其他属性则属于$ [0,4] $,并且非属于$ g $。在所有情况下,我们都会将特征方程式转换为一种方便地通过数值方法求解的形式,并为特征值推导渐近公式。

In this paper we study the eigenvalues of Hermitian Toeplitz matrices with the entries $2,-1,0,\ldots,0,-α$ in the first column. Notice that the generating symbol depends on the order $n$ of the matrix. If $|α|\le 1$, then the eigenvalues belong to $[0,4]$ and are asymptotically distributed as the function $g(x)=4\sin^2(x/2)$ on $[0,π]$. The situation changes drastically when $|α|>1$ and $n$ tends to infinity. Then the two extreme eigenvalues (the minimal and the maximal one) lay out of $[0,4]$ and converge rapidly to certain limits determined by the value of $α$, whilst all others belong to $[0,4]$ and are asymptotically distributed as $g$. In all cases, we transform the characteristic equation to a form convenient to solve by numerical methods, and derive asymptotic formulas for the eigenvalues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源