论文标题

数据眼中的公平性:认证机器学习模型

Fairness in the Eyes of the Data: Certifying Machine-Learning Models

论文作者

Segal, Shahar, Adi, Yossi, Pinkas, Benny, Baum, Carsten, Ganesh, Chaya, Keshet, Joseph

论文摘要

我们提出了一个框架,该框架允许基于交互式和隐私测试来证明模型的公平程度。该框架可验证任何受过训练的模型,无论其培训过程和架构如何。因此,它使我们能够从经验上评估多个公平定义的任何深度学习模型。我们解决了两个方案,其中测试数据仅适用于测试仪,或者是事先公开知道的,甚至是模型创建者。我们使用理论分析研究了提出方法的合理性,并为交互式测试提供了统计保证。最后,我们提供了一种加密技术来自动化公平性测试和认证推断,仅在隐藏参与者的敏感数据的同时,仅使用黑框访问手头的模型。

We present a framework that allows to certify the fairness degree of a model based on an interactive and privacy-preserving test. The framework verifies any trained model, regardless of its training process and architecture. Thus, it allows us to evaluate any deep learning model on multiple fairness definitions empirically. We tackle two scenarios, where either the test data is privately available only to the tester or is publicly known in advance, even to the model creator. We investigate the soundness of the proposed approach using theoretical analysis and present statistical guarantees for the interactive test. Finally, we provide a cryptographic technique to automate fairness testing and certified inference with only black-box access to the model at hand while hiding the participants' sensitive data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源