论文标题
矩阵,野蛮图和Hopf-galois扩展
Matrices, Bratteli Diagrams and Hopf-Galois Extensions
论文作者
论文摘要
我们表明,曲折图中的矩阵嵌入是某些Abelian组的Hopf-Galois扩展(量子原理捆绑包)的直接总和。计算相应的强烈通用连接。我们表明$ m_ {n}(\ mathbb {c})$是hopf algebra $ \ mathbb {c} [\ mathbb {z} _ {n} \ times \ times \ mathbb {z} _ {n} _ {n}] $的小量子原理我们最终以矩阵上的分组对划线的施法进行了结论。
We show that the matrix embeddings in Bratteli diagrams are iterated direct sums of Hopf-Galois extensions (quantum principle bundles) for certain abelian groups. The corresponding strong universal connections are computed. We show that $ M_{n}(\mathbb{C})$ is a trivial quantum principle bundle for the Hopf algebra $ \mathbb{C}[\mathbb{Z}_{n} \times \mathbb{Z}_{n}] $. We conclude with an application relating known calculi on groups to calculi on matrices.