论文标题
关于4H-SIC中高N原子密度层结构和各向异性的第一原理研究
First-principles study on structure and anisotropy of high N-atom density layer in 4H-SiC
论文作者
论文摘要
硝化退火过程被很好地用于减少界面陷阱状态,该界面陷阱状态降低了4H-SIC/SIO $ {} _ 2 $ Metal-Oxenductor-semicDuctor Field-field型晶体管的通道迁移率。在最近的实验中,报告了退火界面处的高N原子密度层的存在,并且已知其浓度在晶体平面中是各向异性的。到目前为止,尚不清楚由氮化退火过程掺入的N原子周围的原子结构的作用在各向异性的起源上。在这项工作中,我们提出了一个简化的4H-SIC的原子尺度模型结构,并使用A高N原子密度层($ \ sim 10^{15}〜\ Mathrm {atom}/\ Mathrm {cm {cm}^2 $),这是实验观察的顺序。我们使用散装4H-SIC作为宿主晶体,并考虑在准立方 - ($ k $ - )和六边形 - ($ h $ - )站点上的N-Atom Incorporated结构的几组原子构型,$ a $ - ,$ m $ - 和si-(c-)planes。根据密度功能理论的计算,我们研究了能量稳定性对分布方向的影响。尽管与逼真的接口结构相比,我们的大量模型被简化了,但我们确认了模型之间的显着差异,并观察到在$ a $ face上掺入n原子是稳定的。此外,从对电子状态的分析中,我们建议这种地层能量的各向异性源于由于n-atom融合结构的几何构型的差异,因此源于协调数的变化。
A nitridation annealing process is well employed to reduce interface trap states that degrade the channel mobility of 4H-SiC/SiO${}_2$ metal-oxide-semiconductor field-effect transistor. In recent experiments, the existence of high N-atom density layers at the annealed interface is reported and their concentrations are known to be anisotropic in the crystal planes. Until now, the role of atomic structure and the electronic states surrounding the N atoms incorporated by the nitridation annealing process on the origin of anisotropy is not well understood. In this work, we propose a simplified atomic-scale model structure of 4H-SiC with the a high N-atom density layer ($\sim 10^{15}~\mathrm{atom}/\mathrm{cm}^2$), which is of the order of the experimental observation. We use bulk 4H-SiC as host crystal and consider several sets of the atomic configurations of the N-atom incorporated structure at the quasi cubic-($k$-) and hexagonal-($h$-)sites on $a$-, $m$-, and Si-(C-)planes. Based on the density functional theory calculations, we investigate the influence of the energy stability on the distribution directions. Although our bulk model is simplified compared to the realistic interface structures, we confirm significant difference among models and observe that the incorporation of N atoms on the $a$-face is stable. Furthermore, from the analysis of the electronic states, we suggest that this anisotropy of the formation energy originates from the change of the coordinating number due to the difference in geometric configurations of the N-atom incorporated structures.