论文标题
对和半剖度的变形
Deformation of pairs and semiregularity
论文作者
论文摘要
在本文中,我们研究了地图的相对变形,该图像是分离的Kähler歧管。我们表明,如果地图满足称为半牙的条件,则仅当图像的循环类别仍然在家族中时,它才能允许相对变形。这给出了所谓的变异霍奇猜想的改进。我们还表明,地图的半剖度与经典概念有关,例如cayley-bacharach条件和D-固定性。
In this paper, we study relative deformations of maps into a family of Kähler manifolds whose images are divisors. We show that if the map satisfies a condition called semiregularity, then it allows relative deformations if and only if the cycle class of the image remains Hodge in the family. This gives a refinement of the so-called variational Hodge conjecture. We also show that the semiregularity of maps is related to classical notions such as Cayley-Bacharach conditions and d-semistability.