论文标题
Riemannian指标在平面载体束上的曲率阳性表征
Characterization of Curvature positivity of Riemannian metrics on flat vector bundles
论文作者
论文摘要
在$ d $方程的$ l^2 $估计条件下,我们给出了限制域上的riemannian平面矢量捆绑包中的中ano积极性的表征。作为应用程序,我们提供了最初由raufi证明的矩阵值prekopa定理的替代证明。我们的方法的灵感来自邓宁·旺·祖(Deng-nning-wang-Zhou)的最新作品,这些著作是对遗传学霍尔米尼霍尔米克式载体载体束和与霍明态纤维相关的直接图像或骨的积极性的表征。
We give a characterization of Nakano positivity of Riemannian flat vector bundles over bounded domains $D\subset\mathbb{R}^n$ in terms of solvability of the $d$ equation with certain good $L^2$ estimate condition. As an application, we give an alternative proof of the matrix-valued Prekopa's theorem that is originally proved by Raufi. Our methods are inspired by the recent works of Deng-Ning-Wang-Zhou on characterization of Nakano positivity of Hermitian holomorphic vector bundles and positivity of direct image sheaves associated to holomorphic fibrations.