论文标题
有效的感染机会人群(EIOP)假设在应用SIR感染理论中
Effective Infection Opportunity Population (EIOP) Hypothesis in Applying SIR Infection Theory
论文作者
论文摘要
Kermack-Mckendrick在1927年发起的SIR感染理论讨论了具有统一特性(例如统一人口分布)的孤立人群中的感染。在感染中,存在两个方面:(1)定量方面和(2)时间方面。由于SIR理论是一种平均场理论,因此它不能同时匹配这两个方面。如果定量方面匹配,则时间方面无法匹配,反之亦然。感染从簇开始,并扩散到不同的地方,增加了感染的大小。总的来说,即使在大城市感染的情况下,感染也会在有限的人群中生长。纳米基(Namiki)发现并将这种人群命名为有效人群。他建议,如果采用了假设,则可以同时匹配定量和时间方面。
The SIR infection theory initiated by Kermack-Mckendrick in 1927 discusses the infection in an isolated population with uniform properties such as the uniform population distribution. In the infection, there exist two aspects: (1) The quantitative aspect and (2) the temporal aspect. Since the SIR theory is a mean-field theory, it can't match both aspects simultaneously. If the quantitative aspect is matched, the temporal aspect can't be matched, versa. The infection starts from a cluster, and it spreads to different places increasing the size of the infection. In general, even in the case of the infection in a big city, the infection grows within a limited population. Namiki found and named this kind of population as an effective population. He proposes that if the hypothesis is adopted, the quantitative and temporal aspects can be matched simultaneously.