论文标题
对牙现代成像调查的denoing算法的比较分析
A comparative analysis of denoising algorithms for extragalactic imaging surveys
论文作者
论文摘要
我们对减少噪声(``DeNoising'')算法的性能进行了全面分析,以确定它们是否在外层次调查图像的源检测中提供了优势。所分析的方法包括perona-malik滤波,双侧滤波器,总变化denoising,结构纹理图像分解,非本地均值,小波和块匹配。我们测试了在典型的哈勃,spitzer和Euclid空间望远镜以及地面仪器的分辨率和深度的模拟图像上测试了算法。选择最佳的内部参数配置后,我们评估了它们作为分辨率,背景级别和图像类型的函数的性能,还测试了它们保留对象通量和形状的能力。我们在完整性和纯度方面分析了在模拟的H160(HST)和K-Band(Hawk-i)观察到烛台商品 - 南方货物场上的模拟欧几里德广泛调查图像上提取的目录。将算法降级通常优于图像的点扩散函数(PSF)的标准方法。在Euclid-Vis图像上应用结构文本图像分解,Perona-Malik滤波,Chambolle的总变化方法以及双边滤波,我们获得的目录比基于标准方法的目录更纯净,更完整0.2个幅度。使用在H160图像上应用的结构文本图像分解算法也可以实现相同的结果。在PSF滤波方面具有降解技术的优势在增加深度时增加。此外,这些技术可以更好地保留相对于PSF平滑的检测物体的形状。降级算法可在检测微弱的物体的检测方面得到显着改善,并增强了当前和未来的乳肠外次测量的科学回报。
We present a comprehensive analysis of the performance of noise-reduction (``denoising'') algorithms to determine whether they provide advantages in source detection on extragalactic survey images. The methods under analysis are Perona-Malik filtering, Bilateral filter, Total Variation denoising, Structure-texture image decomposition, Non-local means, Wavelets, and Block-matching. We tested the algorithms on simulated images of extragalactic fields with resolution and depth typical of the Hubble, Spitzer, and Euclid Space Telescopes, and of ground-based instruments. After choosing their best internal parameters configuration, we assess their performance as a function of resolution, background level, and image type, also testing their ability to preserve the objects fluxes and shapes. We analyze in terms of completeness and purity the catalogs extracted after applying denoising algorithms on a simulated Euclid Wide Survey VIS image, on real H160 (HST) and K-band (HAWK-I) observations of the CANDELS GOODS-South field. Denoising algorithms often outperform the standard approach of filtering with the Point Spread Function (PSF) of the image. Applying Structure-Texture image decomposition, Perona-Malik filtering, the Total Variation method by Chambolle, and Bilateral filtering on the Euclid-VIS image, we obtain catalogs that are both more pure and complete by 0.2 magnitudes than those based on the standard approach. The same result is achieved with the Structure-Texture image decomposition algorithm applied on the H160 image. The advantage of denoising techniques with respect to PSF filtering increases at increasing depth. Moreover, these techniques better preserve the shape of the detected objects with respect to PSF smoothing. Denoising algorithms provide significant improvements in the detection of faint objects and enhance the scientific return of current and future extragalactic surveys.