论文标题
在不断发展的地球和年轻系外行星上的银河宇宙射线强度
The Galactic cosmic ray intensity at the evolving Earth and young exoplanets
论文作者
论文摘要
宇宙射线可能为地球上的生命开始做出了贡献。在这里,我们研究了地球上银河宇宙射线光谱的演变,从$ t = 0.6-6.0 \,$ gyr。我们使用1D宇宙射线传输模型和1.5D恒星风模型来得出太阳能恒星的不断发展的风能。在$ t = 1 \,$ gyr时,大约在认为寿命开始在地球上开始时,我们发现$ \ sim $ gev geev galectic宇宙射线的强度将是$ \ sim10 $ \ sim10 $ \ sim10 $ $倍。在较低的动力学能量下,银河宇宙射线调制将更加严重。更普遍的是,我们发现低能银河宇宙射线的差异强度在年轻人时代降低,并且在太阳旋转速率中被破坏的幂律很好地描述了。我们为不同年龄的地球轨道上的银河宇宙光谱提供了一个分析公式。我们的模型还适用于其他在不同半径上绕的外部球星的太阳能恒星。具体来说,我们使用的是20 $ \,$ t = 600 \,$ myr的银河宇宙射线光谱,以估计宇宙射线在HR $ \,$ 2562B的大气中的渗透,这是直接成像的exoplanet,这是一颗年轻的Solar-type star。我们发现,大多数粒子$ <0.1 $ $ gev在压力下会衰减$ \ gtrsim10^{ - 5} \,$ bar,因此不会达到$ \ sim100 \,$ km的高度。在观察上,在温暖的木星大气中限制了银河宇宙射线光谱,反过来又有助于限制宇宙射线的通量,从而达到年轻的地球样系外行星。
Cosmic rays may have contributed to the start of life on Earth. Here, we investigate the evolution of the Galactic cosmic ray spectrum at Earth from ages $t = 0.6-6.0\,$Gyr. We use a 1D cosmic ray transport model and a 1.5D stellar wind model to derive the evolving wind properties of a solar-type star. At $t=1\,$Gyr, approximately when life is thought to have begun on Earth, we find that the intensity of $\sim$GeV Galactic cosmic rays would have been $\sim10$ times smaller than the present-day value. At lower kinetic energies, Galactic cosmic ray modulation would have been even more severe. More generally, we find that the differential intensity of low energy Galactic cosmic rays decreases at younger ages and is well described by a broken power-law in solar rotation rate. We provide an analytic formula of our Galactic cosmic ray spectra at Earth's orbit for different ages. Our model is also applicable to other solar-type stars with exoplanets orbiting at different radii. Specifically, we use our Galactic cosmic ray spectrum at 20$\,$au for $t=600\,$Myr to estimate the penetration of cosmic rays in the atmosphere of HR$\,$2562b, a directly imaged exoplanet orbiting a young solar-type star. We find that the majority of particles $<0.1$GeV are attenuated at pressures $\gtrsim10^{-5}\,$bar and thus do not reach altitudes below $\sim100\,$km. Observationally constraining the Galactic cosmic ray spectrum in the atmosphere of a warm Jupiter would in turn help constrain the flux of cosmic rays reaching young Earth-like exoplanets.