论文标题

清洁:嵌入式神经网络加速的木马盾牌

CLEANN: Accelerated Trojan Shield for Embedded Neural Networks

论文作者

Javaheripi, Mojan, Samragh, Mohammad, Fields, Gregory, Javidi, Tara, Koushanfar, Farinaz

论文摘要

我们提出了Cleann,这是第一个端到端的框架,可以在线缓解木马用于嵌入式深神经网络(DNN)应用程序。特洛伊木马攻击是通过在训练时在DNN中注入后门来进行的;在推断过程中,特异性后门触发器可以激活特洛伊木马。与先前的工作区分开的是其轻量级方法论,它在不需要标记的数据,模型再培训或触发器或攻击的先前假设的情况下恢复了Trojan样品的地面类别。我们利用词典学习和稀疏近似来表征良性数据的统计行为并识别特洛伊木马触发器。 Cleann是根据算法/硬件共同设计设计的,并配备了专门的硬件,以在资源受限的嵌入式平台上有效地实时执行。对最先进的神经特洛伊特人对视觉基准的攻击的概念验证评估证明了其在攻击弹性和执行开销方面的竞争优势。

We propose CLEANN, the first end-to-end framework that enables online mitigation of Trojans for embedded Deep Neural Network (DNN) applications. A Trojan attack works by injecting a backdoor in the DNN while training; during inference, the Trojan can be activated by the specific backdoor trigger. What differentiates CLEANN from the prior work is its lightweight methodology which recovers the ground-truth class of Trojan samples without the need for labeled data, model retraining, or prior assumptions on the trigger or the attack. We leverage dictionary learning and sparse approximation to characterize the statistical behavior of benign data and identify Trojan triggers. CLEANN is devised based on algorithm/hardware co-design and is equipped with specialized hardware to enable efficient real-time execution on resource-constrained embedded platforms. Proof of concept evaluations on CLEANN for the state-of-the-art Neural Trojan attacks on visual benchmarks demonstrate its competitive advantage in terms of attack resiliency and execution overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源