论文标题
OnSagernet:使用广义的Onsager原理学习稳定且可解释的动态
OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle
论文作者
论文摘要
我们提出了一种系统的方法,该方法使用基于广义的Onsager原理中的物理过程中的采样轨迹数据来学习稳定且可解释的动力学模型。学习的动力学是由神经网络参数化的自主普通微分方程,这些方程保留了清晰的物理结构信息,例如自由能,扩散,保守运动和外部力量。对于低维慢歧管的高维问题,引入了具有度量定期化的自动编码器,以找到我们学习广义的Onsager Dynamics的低维广义坐标。我们的方法比现有方法在学习普通微分方程的基准问题上具有明显的优势。我们进一步应用这种方法来研究雷利 - 贝纳德对流,并学习洛伦兹样低维自动降低的订单模型,以捕获基本动力学的定性和定量特性。这形成了一种通用方法,用于构建强制耗散系统的减少订单模型。
We propose a systematic method for learning stable and physically interpretable dynamical models using sampled trajectory data from physical processes based on a generalized Onsager principle. The learned dynamics are autonomous ordinary differential equations parameterized by neural networks that retain clear physical structure information, such as free energy, diffusion, conservative motion and external forces. For high dimensional problems with a low dimensional slow manifold, an autoencoder with metric preserving regularization is introduced to find the low dimensional generalized coordinates on which we learn the generalized Onsager dynamics. Our method exhibits clear advantages over existing methods on benchmark problems for learning ordinary differential equations. We further apply this method to study Rayleigh-Benard convection and learn Lorenz-like low dimensional autonomous reduced order models that capture both qualitative and quantitative properties of the underlying dynamics. This forms a general approach to building reduced order models for forced dissipative systems.