论文标题

超相关密度基质重归化基团

Transcorrelated Density Matrix Renormalization Group

论文作者

Baiardi, Alberto, Reiher, Markus

论文摘要

我们引入了超相关密度矩阵重新归一化组(TCDMRG)理论,以有效地近似强相关系统的能量。 TCDMRG将波函数编码为固定jastrow或gutzwiller相关器和矩阵乘积状态的乘积。将后者通过将时间依赖性(TD)DMRG的假想时间变体应用于非热相关的汉密尔顿汉尔顿剂进行优化。我们在二维费米 - 哈伯族哈密顿式的示例中证明了TCDMRG的效率,这是DMRG算法的众所周知的艰难目标,以不同的尺寸,职业数量和相互作用强度。我们证明了TCDMRG的快速能量收敛,这表明TCDMRG可以提高标准DMRG的效率,而不是准单一二动系统,并为DMRG的动态相关性问题提供了一种强大的方法。

We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correlator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG at the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源