论文标题

使用压电能量收割机同时收获和步态识别

Simultaneous Energy Harvesting and Gait Recognition using Piezoelectric Energy Harvester

论文作者

Ma, Dong, Lan, Guohao, Xu, Weitao, Hassan, Mahbub, Hu, Wen

论文摘要

通过压力或振动产生电力的压电能量收割机正在越来越多地引起人们的关注,作为一种可行的解决方案,可延长可穿戴设备中的电池寿命。最近的研究进一步表明,除了产生能量外,PEH还可以用作被动传感器,以便检测人步态能力有效,因为其应力或振动模式受到步态的显着影响。但是,由于PEH并非用于精确测量运动,因此使用常规分类算法可实现的步态识别精度仍然很低。当同时存储生成的电力时,准确性进一步恶化。为了可靠地对步态进行分类,同时存储产生的能量,我们做出了两个不同的贡献。首先,我们提出了一种预处理算法,以滤除储能对PEH电信号的影响。其次,我们提出了一个长期的短期内存(LSTM)网络分类器,以准确捕获步态引起的发电中的时间信息。我们原型以鞋垫的形式原型构建了步态识别结构,并评估了其步态识别以及具有20名受试者的能量收获性能。我们的结果表明,拟议的建筑检测到人类步态的回忆增加了12%,并且与最先进的功率相比,能量增加了127%,而消耗的功率则少了38%。

Piezoelectric energy harvester, which generates electricity from stress or vibrations, is gaining increasing attention as a viable solution to extend battery life in wearables. Recent research further reveals that, besides generating energy, PEH can also serve as a passive sensor to detect human gait power-efficiently because its stress or vibration patterns are significantly influenced by the gait. However, as PEHs are not designed for precise measurement of motion, achievable gait recognition accuracy remains low with conventional classification algorithms. The accuracy deteriorates further when the generated electricity is stored simultaneously. To classify gait reliably while simultaneously storing generated energy, we make two distinct contributions. First, we propose a preprocessing algorithm to filter out the effect of energy storage on PEH electricity signal. Second, we propose a long short-term memory (LSTM) network-based classifier to accurately capture temporal information in gait-induced electricity generation. We prototype the proposed gait recognition architecture in the form factor of an insole and evaluate its gait recognition as well as energy harvesting performance with 20 subjects. Our results show that the proposed architecture detects human gait with 12% higher recall and harvests up to 127% more energy while consuming 38% less power compared to the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源