论文标题

玻尔兹曼方程的精确溶液在金属II中用于低温传输系数II:铁磁体散射

Exact solution of the Boltzmann equation for low-temperature transport coefficients in metals II: Scattering by ferromagnons

论文作者

Amarel, J., Belitz, D., Kirkpatrick, T. R.

论文摘要

在上一篇论文(纸I)中,我们开发了一种技术,用于精确求解金属中低温极限中金属电气和热传输系数的线性化玻尔兹曼方程。在这里,我们适应了该技术,以确定金属铁磁体中对电导率和热电导率的镁贡献。对于电阻率$ρ$,在渐近的低温下,我们发现$ρ\ propto \ exp {( - t _ {\ rm min}/t)} $,带有$ t _ {\ rm min} $的能量尺度,这是由交换差距和温度无关的,与指数的温度无关。热导率的相应结果为$σ_H\ propto t^3 \,\ exp {(t _ {\ rm min}/t)} $,而热电器为$ s \ propto t $。所有这些结果都是准确的,包括预成分。

In a previous paper (Paper I) we developed a technique for exactly solving the linearized Boltzmann equation for the electrical and thermal transport coefficients in metals in the low-temperature limit. Here we adapt this technique to determine the magnon contribution to the electrical and thermal conductivities, and to the thermopower, in metallic ferromagnets. For the electrical resistivity $ρ$ at asymptotically low temperatures we find $ρ\propto \exp{(-T_{\rm min}/T)}$, with $T_{\rm min}$ an energy scale that results from the exchange gap and a temperature independent prefactor of the exponential. The corresponding result for the heat conductivity is $σ_h \propto T^3\,\exp{(T_{\rm min}/T)}$, and thermopower is $S \propto T$. All of these results are exact, including the prefactors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源