论文标题
Croke-kleiner可允许的团体:财产(QT)和Quasiconvexity
Croke-Kleiner admissible groups: Property (QT) and quasiconvexity
论文作者
论文摘要
Croke-kleiner的Croke-kleiner群体首先由Croke-Kleiner引入,属于特定的组类,这些图形概括了$ 3 $ - 尺寸图形歧管的基本组。在本文中,我们表明,如果$ g $是Croke-Kleiner允许的小组,在猫(0)空间$ x $上进行几何表现,那么当$ g $的有限生成的亚组具有有限的高度,并且仅当其强烈地quasi-convex时。我们还表明,如果$ g \ curvearrowright x $是翻转CKA动作,那么$ g $是准时嵌入准Trees的有限产物中的准时。通过对Flip CKA Action $ G \ Curvearrowright X $的顶点组的进一步假设,我们表明$ G $满足了Bestvina-Bromberg-Fujiwara引入的属性(QT)。
Croke-Kleiner admissible groups firstly introduced by Croke-Kleiner belong to a particular class of graph of groups which generalize fundamental groups of $3$--dimensional graph manifolds. In this paper, we show that if $G$ is a Croke-Kleiner admissible group, acting geometrically on a CAT(0) space $X$, then a finitely generated subgroup of $G$ has finite height if and only if it is strongly quasi-convex. We also show that if $G \curvearrowright X$ is a flip CKA action then $G$ is quasi-isometric embedded into a finite product of quasi-trees. With further assumption on the vertex groups of the flip CKA action $G \curvearrowright X$, we show that $G$ satisfies property (QT) that is introduced by Bestvina-Bromberg-Fujiwara.