论文标题
瞬时载荷时矿化胶原原纤维的力学
Mechanics of mineralized collagen fibrils upon transient loads
论文作者
论文摘要
胶原蛋白是人体中的关键结构蛋白,在硬组织形成期间经历了矿化。早期的研究描述了骨头在不同尺度上的机械行为,突出了跨分层结构的材料特征。在这里,我们提出了一项研究,旨在了解拉伸/压缩瞬态载荷时矿化胶原蛋白原纤维的机械性能,研究动能如何在分子尺度上散开并消散,从而填补了该区域中知识的空白。这些特定的特征是自然已经开发出的机制,可以被动消除压力并防止结构性失败。除了矿化原纤维的机械性能外,我们还观察到D型d-period的两个区域(即重叠和间隙)的不同纳米力学行为,以突出矿化作用。我们注意到,由于羟基磷灰石的积累,波速速度和年轻S模量的趋势都降低了输入速度,在间隙区域的加强作用显着。相比之下,耗散行为不受加载条件或矿物百分比的影响,表明对与宏观骨骼行为兼容的更快输入的衰减影响更强。我们的结果提高了对矿化胶原复合材料的理解,揭示了此类材料的能量耗散行为。除了生理学外,这还影响了用于替换设备的新生物启发的复合材料的设计和表征(例如,用于声音传播或传导的假体)以及能够承受瞬态载荷的优化结构,例如影响,疲劳,在结构应用中。
Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales highlighting material features across hierarchical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that Nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (i.e., overlap and gap) of the D-period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young s moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger dampening effect upon faster inputs compatible to the bone behavior at the macroscale. Our results improve the understanding of mineralized collagen composites unveiling the energy dissipative behavior of such materials. This impacts, besides the physiology, the design and characterization of new bioinspired composites for replacement devices (e.g., prostheses for sound transmission or conduction) and for optimized structures able to bear transient loads, e.g., impact, fatigue, in structural applications.